π Overview & Architecture
π― What is IBM Sterling OMS Next Gen?
A cloud-native order management system built on microservices architecture with containerized deployment using Docker and Kubernetes. Features API-first approach with GraphQL and REST APIs, event-driven architecture with real-time processing capabilities.
π️ Key Architectural Components
Component
Description
Key Features
Order Hub
Central order processing engine
Multi-channel capture, orchestration, routing
Inventory Hub
Real-time inventory management
ATP calculations, allocation, tracking
Fulfillment Hub
Order fulfillment orchestration
Wave planning, pick optimization, shipping
Customer Hub
Customer data management
Profile management, preferences, history
Partner Hub
Supplier/vendor integration
EDI, API integration, collaboration
Analytics Hub
Real-time analytics and reporting
KPI dashboards, trends, insights
⚡ Core Features
π¦ Order Management
Multi-channel order capture
Order orchestration and routing
Split shipment handling
Backorder management
Returns and exchanges
π Inventory Management
Real-time inventory visibility
ATP calculations
Safety stock management
Multi-location tracking
Demand forecasting
π Fulfillment Operations
Wave planning optimization
Pick path optimization
Shipment consolidation
Carrier integration
Track and trace
π️ Technical Architecture
π§ Technology Stack
Layer
Technology
Purpose
Runtime
Java 11+, Node.js
Application execution environment
Containers
Docker, Kubernetes
Containerization and orchestration
Databases
PostgreSQL, MongoDB, Redis
Data persistence and caching
Message Queue
Apache Kafka, RabbitMQ
Event streaming and messaging
API Gateway
Kong, Istio
API management and routing
Monitoring
Prometheus, Grafana, ELK
Observability and logging
π️ Microservices Architecture
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Order Service │ │Inventory Service│ │Fulfillment Svc │
│ │ │ │ │ │
│ • Create Orders │ │ • Track Stock │ │ • Wave Planning │
│ • Update Status │ │ • ATP Check │ │ • Pick Optimize │
│ • Process Mods │ │ • Allocation │ │ • Ship Orders │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│ │ │
└───────────────────────┼───────────────────────┘
│
┌─────────────────┐
│ Event Bus │
│ (Kafka/MQ) │
│ │
│ • Order Events │
│ • Inventory Evt │
│ • Ship Events │
└─────────────────┘
π API Reference
π‘ GraphQL Endpoints
# Order Queries
query getOrder($orderId: ID!) {
order(id: $orderId) {
id
status
orderNumber
items {
sku
quantity
price
status
}
customer {
id
email
name
}
shipping {
address
method
trackingNumber
}
}
}
# Create Order Mutation
mutation createOrder($input: OrderInput!) {
createOrder(input: $input) {
id
status
orderNumber
estimatedDelivery
}
}
# Update Inventory
mutation updateInventory($sku: String!, $quantity: Int!, $location: String!) {
updateInventory(sku: $sku, quantity: $quantity, location: $location) {
sku
availableQuantity
reservedQuantity
location
}
}
π REST API Endpoints
Method
Endpoint
Description
Example
GET
/api/v1/orders/{orderId}
Retrieve order details
GET /api/v1/orders/12345
POST
/api/v1/orders
Create new order
POST /api/v1/orders
PUT
/api/v1/orders/{orderId}
Update order
PUT /api/v1/orders/12345
GET
/api/v1/inventory/{sku}
Get inventory levels
GET /api/v1/inventory/ABC123
POST
/api/v1/fulfillment/shipments
Create shipment
POST /api/v1/fulfillment/shipments
# Create Order Example
POST /api/v1/orders
Content-Type: application/json
Authorization: Bearer {token}
{
"customerId": "CUST-12345",
"orderType": "SALES",
"channel": "WEB",
"items": [
{
"sku": "ABC123",
"quantity": 2,
"unitPrice": 29.99
},
{
"sku": "XYZ789",
"quantity": 1,
"unitPrice": 49.99
}
],
"shipping": {
"method": "STANDARD",
"address": {
"street": "123 Main St",
"city": "New York",
"state": "NY",
"zip": "10001"
}
}
}
⚙️ Configuration & Setup
π§ Environment Configuration
# application.yml
server:
port: 8080
servlet:
context-path: /oms
spring:
application:
name: sterling-oms-nextgen
datasource:
url: jdbc:postgresql://localhost:5432/omsdb
username: ${DB_USER:omsuser}
password: ${DB_PASSWORD:password}
hikari:
maximum-pool-size: 20
minimum-idle: 5
jpa:
hibernate:
ddl-auto: validate
show-sql: false
kafka:
bootstrap-servers: ${KAFKA_BROKERS:localhost:9092}
consumer:
group-id: oms-consumer-group
topics:
order-events: order.events
inventory-events: inventory.events
fulfillment-events: fulfillment.events
redis:
host: ${REDIS_HOST:localhost}
port: ${REDIS_PORT:6379}
timeout: 2000ms
management:
endpoints:
web:
exposure:
include: health,metrics,info,prometheus
endpoint:
health:
show-details: always
π³ Docker Configuration
Component
Image
Port
Environment Variables
OMS Service
sterling-oms:latest
8080
DB_HOST, KAFKA_BROKERS, REDIS_HOST
PostgreSQL
postgres:13
5432
POSTGRES_DB, POSTGRES_USER, POSTGRES_PASSWORD
Kafka
confluentinc/cp-kafka
9092
KAFKA_ZOOKEEPER_CONNECT, KAFKA_ADVERTISED_LISTENERS
Redis
redis:6-alpine
6379
REDIS_PASSWORD (optional)
# docker-compose.yml
version: '3.8'
services:
oms-service:
image: sterling-oms-nextgen:latest
ports:
- "8080:8080"
environment:
- DB_HOST=postgres
- DB_USER=omsuser
- DB_PASSWORD=omspass
- KAFKA_BROKERS=kafka:9092
- REDIS_HOST=redis
depends_on:
- postgres
- kafka
- redis
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8080/health"]
interval: 30s
timeout: 10s
retries: 3
postgres:
image: postgres:13
environment:
- POSTGRES_DB=omsdb
- POSTGRES_USER=omsuser
- POSTGRES_PASSWORD=omspass
volumes:
- postgres_data:/var/lib/postgresql/data
ports:
- "5432:5432"
kafka:
image: confluentinc/cp-kafka:latest
environment:
- KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181
- KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://kafka:9092
- KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR=1
depends_on:
- zookeeper
ports:
- "9092:9092"
volumes:
postgres_data:
π Key Business Processes
π Order Lifecycle
Stage
Activities
Systems Involved
Key Metrics
1. Order Capture
Validation, Pricing, Tax Calculation
Order Hub, Customer Hub
Order Creation Time, Validation Success Rate
2. Inventory Check
ATP Check, Allocation, Reservation
Inventory Hub
ATP Response Time, Allocation Success Rate
3. Payment Processing
Authorization, Fraud Check, Settlement
Payment Gateway, Risk Engine
Authorization Rate, Fraud Detection Rate
4. Fulfillment
Wave Planning, Pick, Pack, Ship
Fulfillment Hub, WMS Integration
Pick Accuracy, Ship Time, Fill Rate
5. Delivery
Track, Deliver, Confirm, Complete
Carrier Integration, Customer Portal
On-Time Delivery, Customer Satisfaction
π― Process Optimization Tips
Parallel Processing: Run inventory check and payment authorization simultaneously
Early Allocation: Reserve inventory immediately after order validation
Smart Routing: Use ML algorithms for optimal fulfillment location selection
Exception Handling: Implement automated fallback processes for common failures
π Integration Patterns
⚡ Event-Driven Integration
{
"eventId": "evt_001",
"eventType": "ORDER_CREATED",
"timestamp": "2024-01-15T10:30:00Z",
"source": "order-service",
"data": {
"orderId": "ORD-12345",
"customerId": "CUST-67890",
"orderNumber": "WEB-2024-001",
"status": "CREATED",
"totalAmount": 149.97,
"currency": "USD",
"items": [
{
"lineId": "line_001",
"sku": "ITEM-001",
"quantity": 2,
"unitPrice": 49.99,
"totalPrice": 99.98
}
],
"shipping": {
"method": "STANDARD",
"estimatedDelivery": "2024-01-20"
}
}
}
π Integration Endpoints
Integration Type
Protocol
Use Case
Example
Webhooks
HTTP POST
Real-time notifications
Order status updates
REST APIs
HTTP/HTTPS
Synchronous operations
Create/Update orders
GraphQL
HTTP/HTTPS
Flexible data queries
Customer portal data
Message Queue
Kafka/AMQP
Asynchronous processing
Inventory updates
EDI
X12/EDIFACT
B2B transactions
Supplier integration
π Performance & Monitoring
π Key Performance Metrics
Category
Metric
Target
Alert Threshold
Performance
API Response Time (95th percentile)
< 500ms
> 1000ms
Throughput
Orders Processed per Hour
> 10,000
< 5,000
Reliability
System Uptime
99.9%
< 99.5%
Accuracy
Order Processing Error Rate
< 0.1%
> 0.5%
Inventory
Inventory Accuracy
> 99.5%
< 98%
Fulfillment
Order Fill Rate
> 95%
< 90%
π Health Check Endpoints
# System Health
GET /actuator/health
Response: {
"status": "UP",
"components": {
"db": {"status": "UP"},
"kafka": {"status": "UP"},
"redis": {"status": "UP"}
}
}
# Application Metrics
GET /actuator/metrics
Response: {
"names": [
"jvm.memory.used",
"http.server.requests",
"kafka.consumer.lag"
]
}
# Custom Business Metrics
GET /actuator/prometheus
Response:
# HELP orders_processed_total Total number of orders processed
# TYPE orders_processed_total counter
orders_processed_total{status="completed"} 12345.0
orders_processed_total{status="failed"} 23.0
π Monitoring Dashboard Setup
π― Essential Dashboards
Business KPIs: Order volume, revenue, conversion rates
System Health: CPU, memory, disk usage, network I/O
Application Metrics: Response times, error rates, throughput
Infrastructure: Container health, database connections, message queue lag
Custom Alerts: Business rule violations, SLA breaches
✅ Best Practices
π¨π» Development
Use domain-driven design principles
Implement circuit breaker patterns
Follow 12-factor app methodology
Use feature toggles for safe deployments
Comprehensive testing (unit, integration, e2e)
π Operations
Automated monitoring and alerting
Blue-green deployments
Container orchestration (Kubernetes)
Disaster recovery procedures
Regular performance testing
π Security
OAuth 2.0/JWT authentication
API rate limiting
Audit logging
Regular security scanning
Data encryption at rest and in transit
π️ Architecture Best Practices
Pattern
Description
Implementation
Benefits
Circuit Breaker
Prevent cascading failures
Hystrix, Resilience4j
System resilience, graceful degradation
Event Sourcing
Store events instead of current state
Event store, replay capability
Audit trail, time travel debugging
CQRS
Separate read/write models
Command/Query segregation
Optimized performance, scalability
Saga Pattern
Distributed transaction management
Choreography/Orchestration
Data consistency, error recovery
π§ Troubleshooting Guide
❗ Common Issues & Solutions
Issue
Symptoms
Possible Causes
Solutions
Order Processing Delays
High processing times, queue backlog
Database contention, inventory service down
Scale services, optimize queries, check dependencies
API Timeouts
HTTP 504 errors, slow responses
Network latency, resource constraints
Increase timeouts, scale horizontally, optimize code
Inventory Discrepancies
Stock showing incorrect levels
Race conditions, sync issues
Implement proper locking, audit sync processes
Message Queue Lag
Events not processed timely
Consumer overload, topic misconfiguration
Increase partitions, scale consumers
π Diagnostic Commands
# Check Kubernetes pods status
kubectl get pods -n oms-namespace
kubectl describe pod oms-service-xxx
# View application logs
kubectl logs -f deployment/oms-service --tail=100
kubectl logs -f deployment/oms-service --previous
# Check resource usage
kubectl top pods -n oms-namespace
kubectl top nodes
# Database connectivity test
kubectl exec -it postgres-pod -- psql -U omsuser -d omsdb -c "SELECT 1;"
# Kafka consumer lag check
kubectl exec -it kafka-pod -- kafka-consumer-groups.sh \
--bootstrap-server localhost:9092 \
--describe --group oms-consumer-group
# Redis connectivity test
kubectl exec -it redis-pod -- redis-cli ping
# Port forwarding for local debugging
kubectl port-forward svc/oms-service 8080:8080
kubectl port-forward svc/kafka 9092:9092
⚠️ Emergency Response Procedures
Immediate Assessment: Check system dashboards and alerts
Isolate Impact: Determine affected services and customers
Implement Workaround: Route traffic to healthy instances
Root Cause Analysis: Investigate logs and metrics
Communication: Update stakeholders and customers
Post-Incident Review: Document lessons learned
π¦ Migration Considerations
π Migration Strategy
Phase
Activities
Duration
Risk Level
Assessment
Current state analysis, gap identification
2-4 weeks
Low
Planning
Migration roadmap, resource allocation
2-3 weeks
Low
Development
Data mapping, integration development
8-12 weeks
Medium
Testing
Unit, integration, performance testing
4-6 weeks
Medium
Pilot
Limited production deployment
2-4 weeks
High
Full Rollout
Complete system migration
1-2 weeks
High
✅ Go-Live Checklist
π Pre-Go-Live Validation
✅
Item
Owner
Status
☐
Environment provisioning complete
Infrastructure Team
Pending
☐
Data migration validated
Data Team
Pending
☐
Integration testing passed
QA Team
Pending
☐
Performance testing completed
Performance Team
Pending
☐
Security scanning clear
Security Team
Pending
☐
Monitoring configured
DevOps Team
Pending
☐
Rollback plan tested
Release Team
Pending
π Resources & References
π Documentation
IBM Sterling OMS Next Gen Official Docs
API Reference Guide
Deployment Guide
Integration Patterns Guide
Troubleshooting Manual
π Community & Support
IBM Sterling Community Forums
Stack Overflow: ibm-sterling-oms
GitHub: Sample implementations
IBM Support Portal
Developer Slack Channels
π Training Resources
IBM Sterling OMS Certification
Online Learning Modules
Hands-on Labs
Partner Training Programs
Webinar Series
π Quick Reference Links
Resource
Description
URL Pattern
API Documentation
Interactive API explorer
https://your-oms-instance/swagger-ui
Health Dashboard
System health monitoring
https://your-oms-instance/actuator/health
Metrics Endpoint
Prometheus metrics
https://your-oms-instance/actuator/prometheus
GraphQL Playground
GraphQL query interface
https://your-oms-instance/graphql
π Quick Start Commands
# Clone starter template
git clone https://github.com/ibm-sterling/oms-nextgen-starter.git
# Run with Docker Compose
docker-compose up -d
# Check system health
curl http://localhost:8080/actuator/health
# Create sample order
curl -X POST http://localhost:8080/api/v1/orders \
-H "Content-Type: application/json" \
-d '{"customerId":"12345","items":[{"sku":"ABC123","quantity":1}]}'
# Monitor logs
docker-compose logs -f oms-service
π Ready to implement IBM Sterling OMS Next Gen?
This comprehensive cheat sheet covers everything you need to get started. Bookmark this page and refer back as needed!
Last Updated: January 2025 |
Version: Sterling OMS Next Gen v2024.1
No comments:
Post a Comment